Rotational Objects Recognition and Angle Estimation via Kernel-Mapping CNN
نویسندگان
چکیده
منابع مشابه
Interoperability via Mapping Objects
1. Introduction In order to provide end-users with services of better quality, Digital Libraries (DLs) need to be constantly adopting new technologies that are emerging in various related fields, e.g., new metadata models and languages, new information retrieval algorithms, and new storage means. These force DLs to constantly alter their basic structure, generating significant interoperability ...
متن کاملTime-frequency kernel-based CNN for speech recognition
We propose a novel approach to generate time-frequency kernel based deep convolutional neural networks (CNN) for robust speech recognition. We give different treatments to shifting along the time and the frequency axes of speech feature representations in the 2D convolution, so as to achieve certain invariance in small frequency shifts while expanding time context size for speech input without ...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملKernel Mean Estimation via Spectral Filtering
The problem of estimating the kernel mean in a reproducing kernel Hilbert space (RKHS) is central to kernel methods in that it is used by classical approaches (e.g., when centering a kernel PCA matrix), and it also forms the core inference step of modern kernel methods (e.g., kernel-based non-parametric tests) that rely on embedding probability distributions in RKHSs. Previous work [1] has show...
متن کاملAn Improved Kernel Density Estimation Approach for Moving Objects Detection
Moving object detection based on monitoring video system is often a challenging problem. Specially to monitor traffic at both day and night, in different weather and illumination conditions and with changeable background. Kernel Density Estimation (KDE) model is an effective approach to judge background and foreground, however, typical KDE uses fixed parameters, such as bandwidths, threshold, e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2933673